
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
 

 
 
 

Making Friends Meet: Network Formation with Introductions 

Jan-Peter Siedlarek 

Working Paper No. 20-01R2 

June 2022 
 

Suggested citation: Siedlarek, Jan-Peter. 2022. "Making Friends Meet: Network Formation with 
Introductions." Working Paper No. 20-01R2. Federal Reserve Bank of Cleveland. 
https://doi.org/10.26509/frbc-wp-202001r2. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Federal Reserve Bank of Cleveland Working Paper Series 
ISSN: 2573-7953 
 
Working papers of the Federal Reserve Bank of Cleveland are preliminary materials circulated to 
stimulate discussion and critical comment on research in progress. They may not have been subject      to 
the formal editorial review accorded official Federal Reserve Bank of Cleveland publications. 
 
See more working papers at: www.clevelandfed.org/research. Subscribe to email alerts to be notified 
when a new working paper is posted at: www.clevelandfed.org/subscribe. 

https://doi.org/10.26509/frbc-wp-202001r2
http://www.clevelandfed.org/research
http://www.clevelandfed.org/subscribe


Making Friends Meet:

Network Formation with Introductions
*

Jan-Peter Siedlarek
†

June 2022

Abstract

This paper proposes a parsimonious model of network formation with introductions in the

presence of intermediation rents. Introductions allow two nodes to form a new connection

on favorable terms with the help of a common neighbor. The decision to form links via

introductions is subject to a trade-off between the gains from having a direct connection at

lower cost and the potential losses for the introducer from lower intermediation rents. When

nodes take advantage of introductions, stable networks tend to exhibit a minimum amount of

clustering. At the same time, intermediary nodes have incentives to protect their position, and

stable networks can exhibit nodes exploiting structural holes, that is, bridges across otherwise

unconnected parts of the network earning intermediation rents.
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1 Introduction

When new connections are being formed in business or social networks, existing connections can

play an important role in facilitating new links. A simple illustration of such network-based linking

involves an introduction or referral, which creates a new connection between two previously

unconnected nodes, thanks to a common acquaintance that brings them together. This paper

proposes a model to study how incorporating introductions in a strategic network formation

model affects the characteristics of the networks that result.

Link creation between nodes sharing a common neighbor is known as triadic closure, and it

has been documented to be an important dynamic in the formation of networks in a number of

different settings.1 Uzzi (1996), in an in-depth study of the apparel industry in New York, describes

how new relationships in business networks between two parties often result from referrals by

common business partners:

In the firms I studied, third-party referral networks were often cited as sources of embeddedness.
[. . . ] One actor with an embedded tie to each of two unconnected actors acts as their go-between
by using her common link to establish trustworthiness between them (Uzzi, 1996, p. 679,

emphasis added)

Also in the context of business networks, Kogut and Walker (2001) investigate the co-ownership

network of German firms and identify a role for firms they call “brokers” that facilitate new

acquisitions based on their existing connections and tend to be placed in central positions. In a

different setting, Chaney (2014) shows that new connections in international trade networks can

be explained with a dynamic model in which exporting firms create new trade relationships by

exploiting their existing export contacts in the geographic vicinity of the desired new destination.

More generally, business referrals can play an important role in establishing new relationships

between market participants, thereby enabling trading to take place. Similar dynamics with

network-based link creation have been observed in social networks. For example, Mayer and

Puller (2008) study the dynamics of a network of relationships at a university. They show that an

existing common neighbor within the network is a strong predictor of the formation of a new link

between two nodes.

A key aspect of introductions as a way to create new relationships is the active role played

by the go-between in the creation of the new connection. Without the agreement of the referring

party, the new connection could not access the benefits of the introduction. This paper studies

such introductions including the incentives for the parties involved and their implications for the

formation of social and business networks.

Why would the presence of a common neighbor support the efforts of a pair of nodes to create

1 See, for example, Easley and Kleinberg (2010, Chapter 3) for an introduction.
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a connection? As noted in the passage from Uzzi (1996) quoted above, a common neighbor can

facilitate new links and help to build trust between two potential partners where this would be

difficult without a go-between. In addition, links supported by common neighbors may be able

to access greater benefits than connections without such support, for example to help enforce

risk agreements among individuals (Jackson, Rodriguez-Barraquer, and Tan, 2012), or by offering

redundancy advantages (Renou and Tomala, 2012). In sociology, Coleman (1988) makes a strong

argument for the benefits derived by individuals that are embedded in densely connected networks

and that he labels “network closure”. The model in this paper captures the advantages of links

created by introduction on the cost side, assigning them a lower cost than links created bilaterally.

Aside from these benefits, introductions also come with potential downsides to the nodes in-

volved. The key one for the purposes of this paper concerns the redistribution of intermediation

rents. Specifically, where a network node in a structurally important position between two other

unconnected nodes earns rents for intermediating an indirect connection between them, such a go-

between potentially risks losing these rents when new links are created among the intermediary’s

neighbors. Intermediation rents have been studied extensively in sociology and economics, in par-

ticular in the context of business and organizational networks. In his work on network advantage

in such contexts, Burt (1992) labels such positions “structural holes” and provides evidence for

the payoffs that individuals in these positions can earn. Since this earlier study, follow-up work

has found additional evidence of the value of holding a central position in the network in various

settings, including intrafirm organizational networks and interfirm R&D collaboration (Podolny

and Baron, 1997; Ahuja, 2000; Mehra, Kilduff, and Brass, 2001; Owen-Smith and Powell, 2004).

In economics, returns for intermediaries in networks have been studied by, among others, Blume

et al. (2009), Condorelli, Galeotti, and Renou (2017), Farboodi, Jarosch, and Menzio (2017), and

Manea (2018).

This paper presents a parsimonious model to study network formation with introductions in

networks with intermediation rents, such as in the business networks studied in Burt (1992) and

the related papers above. The model is a variant of the connections model of Jackson and Wolinsky

(1996) with intermediation rents added, in the spirit of Goyal, van der Leĳ, and Moraga-González

(2006). Network connections generate payoffs for the parties connected, directly or indirectly.

Furthermore, as in Goyal and Vega-Redondo (2007) and Kleinberg et al. (2008), there are returns

for intermediaries that connect otherwise disconnected nodes.

New links can be formed bilaterally or through introductions. Introductions can create a new

link if the new link connects two nodes that share a common neighbor and all three parties agree.

Introductions have a cost advantage over bilateral link formation, but they potentially threaten the

rents for the central go-between.

The introduction mechanism thus combines a tendency for triadic closure with an explicit

consideration of the incentives that arise from intermediation, generating a distinct trade-off for
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the introducing nodes. On the one hand, an introduction is an efficient way of creating connections

as it reduces the costs involved in non-intermediated link formation. On the other hand, links

created by introductions affect the distribution of payoffs and can expose the introducing player to

circumvention, threatening intermediation payoffs received from being essential. The analysis of

this trade-off and how it contributes to network features such as high clustering, short distances,

and network bridges forms the core of the paper.

The paper shows first that efficient network structures are either empty networks, star networks,

or complete networks, reflecting the familiar patterns from the baseline connections model of

Jackson and Wolinsky (1996). It then focuses on incentives for decentralized link formation by

studying the set of networks that are stable to deviations by link creation or destruction. The

analysis shows that the set of efficient network configurations is not necessarily stable for a given

parameter configuration, revealing externalities in link creation and destruction. More generally,

if the benefits to linking are sufficiently high, stable networks tend to be connected and there

exists a limit on the distance between any pair of nodes, given their degree. Next, the paper

analyzes the use of introductions. It derives a lower bound on the clustering coefficient for any

node in stable networks, with introductions providing the impetus for closing open triangles.

The bound depends on the strength of returns to intermediation as well as the cost advantage of

introductions over bilateral link formation. If parameters are such that nodes can take advantage of

introductions, the predicted network exhibits features of a small world (Watts and Strogatz, 1998)

with high clustering and short distances, a structure that has been identified in business networks

(Kogut and Walker, 2001). What limits the closing of all open triangles through introductions

is the incentive for essential intermediaries to protect the rents they receive from connecting

otherwise disconnected parts of the network. These incentives imply that where opportunities

for introductions remain unused in stable networks they act as bridges across densely connected

subnetworks. Thus, under suitable conditions, links bridging otherwise disconnected parts of

the network and earning substantial returns to intermediation can coexist with high clustering in

stable networks, capturing the structural holes of Burt (1992) as documented in empirical settings,

for example, in Owen-Smith and Powell (2004).

The paper contributes to the literature on network formation related to the study of the intro-

duction mechanism and the compensation of intermediate nodes. While intuitive, studying link

creation as a process conditional on the network in place at a given time is relatively novel in the

literature on strategic network formation.2 The two papers closest to this paper are Jackson and

2 The literature on network formation can usefully be grouped into two main categories: (i) random network formation

and (ii) strategic network formation. Whereas the first approach analyzes the outcome of an exogenous stochastic

process of link creation and aims to explain the observed features of real-world networks, the second explicitly studies

the incentives of nodes to form links among themselves. Network formation is then the outcome of individual payoff

maximization by nodes. The present paper falls into the second category, although I will in places refer to work from

the random-network-formation tradition.
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Rogers (2007) and Jackson and Rogers (2005). In Jackson and Rogers (2007) the authors study a

random network-formation setup with a growing network in which new nodes first connect to a

set of randomly chosen existing nodes and in a second process may connect to neighbors of those

nodes, that is, connect to friends of friends. Connections created by the second process are similar

to those formed in an introduction as studied here in that they close open triangles. Using a combi-

nation of both processes, Jackson and Rogers (2007) are able to match a mean-field approximation

of their model to the network properties of a number of applied settings, including high clustering

coefficients. The present paper is complementary to Jackson and Rogers (2007) and different from

it in at least two main ways. First, Jackson and Rogers (2007) model link creation via random

meeting opportunities, which result in links if the pair of nodes to be linked finds it beneficial to

connect. This ignores the strategic aspects of the key role that intermediary players perform in

making the kind of introductions that facilitate the friends-of-friends meetings. In contrast, in this

paper, I explicitly study intermediary incentives. Second, the underlying payoff model in Jackson

and Rogers (2007) focuses on the returns of each connecting pair independent of the implications

for returns from other parts of the network.3 My model puts such externalities at the center of the

analysis, studying how incentives for intermediaries to protect their returns shape the resulting

network and can lead to outcomes combining both high clustering and bridging across structural

holes.

Beyond Jackson and Rogers (2007), an earlier contribution by Vázquez (2003) presents a mean-

field analysis of graph dynamics with a nearest-friend link creation process. That contribution

ignores strategic considerations and focuses instead on how local rules may motivate the pref-

erential attachment hypothesis. More recently, local structures of the network such as triangles

and the processes generating them have been exploited in empirical work on network data. For

example, Chandrasekhar and Jackson (2018) show how local structures such as triangles and other

subgraphs can be used to study network-formation processes empirically. Recent surveys on this

active work stream can be found in Graham (2019) and de Paula (2019).

The second closely related paper is Jackson and Rogers (2005). In their paper the authors offer

a strategic network-formation model that can predict small-world properties. The key ingredients

in their analysis are the benefits from indirect links as in the connections model of Jackson and

Wolinsky (1996) and an “islands” cost model, in which links connecting players on the same island

are cheaper than links between islands. The present model similarly explains both clustering and

short distances but, in addition, analyzes the effect of intermediation benefits and the resulting

incentives for individuals to adopt and protect bridging positions. In Jackson and Rogers (2005)

the grouping of players into easily connected islands is given exogenously; in my paper, the cost

3 In extensions in Section V, Jackson and Rogers (2007) discuss the implications of different payoff specifications and

formally show the effect of making payoffs dependent on degree. However, they do not include an analysis of the

externalities resulting from intermediation returns.
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advantages arise endogenously through the introduction mechanism. This endogenous, network-

based cost structure is one of the key differences between the present paper and Jackson and Rogers

(2005).

In strategic network formation, Priazhkina and Page (2018) study referrals or market-sharing

by sellers in buyer-seller networks. Although this setting is different from the connections model

studied here, referrals are related to introductions in that they require an existing seller-buyer

relationship in order for the seller to be able to execute a referral. In their paper, the authors study

the incentives for referrals and the implications for market functioning.

In addition, this paper offers a contribution to the literature on incentives for intermediary nodes

and rents from intermediation. The benefits accruing to nodes in specific positions crucial to the

connectivity of the network are discussed extensively by Burt (1992) in the context of organizations.

The author investigates the rents available to individuals who bridge “structural holes” and the

dynamics of jockeying for the positions required to access these rents. Subsequent papers have

studied the tension between triadic closure and structural holes. In the economics literature,

Goyal and Vega-Redondo (2007) consider network formation in the presence of intermediation

benefits and analyze the interplay of three motivations: (i) access to the network, (ii) benefits from

intermediation, and (iii) avoidance of sharing benefits with intermediaries. They find that in the

absence of capacity constraints, a star emerges, in which a single node acts as intermediary for

all transactions, receiving significant intermediation rents. Contrary to the present paper, in their

model, Goyal and Vega-Redondo (2007) focus on direct link creation and do not implement an

introduction mechanism. Other related papers in this vein include Buskens and van de Rĳt (2008),

Kleinberg et al. (2008) and Kossinets and Watts (2006).

Ambrus and Elliott (2021) consider stable and efficient configurations of risk-sharing networks.

They find a trade-off between stability and inequality: The most stable networks tend to be the

most unequal as well, with central agents connecting more peripheral ones and capturing most of

the benefits of the network. As in the present paper, Ambrus and Elliott (2021) find that stable

networks tend to both exhibit short distances and include some nodes that bridge others and earn

high returns. In their main model, closed triangles have no advantage over open triangles and

indeed a closed triangle would be inefficient. In an extension Ambrus and Elliott (2021) study the

implication of requiring agents to have a common friend for risk-sharing to work. This requirement

implies that at least three nodes need to be involved for risk-sharing, and for this reason Ambrus

and Elliott (2021) also modify their initially pairwise stability notion to allow for deviations by

triplets. This concept of a triplet-wise deviation mirrors the notion of deviations by introduction

used in this paper. In that version of the model, network structures that are similar to the windmill

graphs in Figure 5 arise as efficient and stable configurations.

Finally, my paper is related to the literature on strategic network formation with transfers. The

introduction mechanism I study requires a mechanism to facilitate compensation of the interme-
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diating node. As a result, transfer payments and their ability to overcome externalities play a key

role. The seminal contribution in this area is Currarini and Morelli (2000), who study a sequential

setup with transfers and find that with relatively few restrictions on payoffs, efficient networks

are formed in equilibrium. A more general analysis of the various forms of transfers and their

ability to implement efficiency in simultaneous network formation is found in Bloch and Jackson

(2007). Neither paper studies the introduction process at the center of the present paper. My paper

contributes to the literature by extending the standard game-theoretic tool of pairwise stability

(Jackson and Wolinsky, 1996) to a setting with more than two players.

The remainder of the paper is structured as follows. Section 2 presents the main model, includ-

ing network notions and payoff structures. Using this model, Section 3 presents the introduction

mechanism and characterizes efficient networks. Section 4 studies the characteristics of networks

that are stable to deviations, including introductions, and contains the key results regarding short

distances, intermediation benefits, and minimum clustering. Finally, Section 5 concludes.

2 A Model of Network Formation with Intermediation and Introduc-
tions

This section introduces a model of network formation with introductions and intermediation rents.

It builds on the symmetric connections model of Jackson and Wolinsky (1996): Nodes create payoffs

from direct and indirect connections and there is a cost to maintaining links. On top of this, the

model in this paper introduces rents for link intermediation as well as a new way of creating links

via introductions.

2.1 A Connections Model with Intermediation Rents

To start, we set out some network notation. There is a finite set of players 𝑁 = {1, 2, . . . , 𝑛} with

𝑛 > 3. Players represent nodes that are linked in a network 𝑔. The network 𝑔 is a set of links, that

is, pairs of players that are connected to one another, with typical element 𝑖 𝑗 representing a link

between players 𝑖 and 𝑗. Let 𝑔𝑁 be the set of all pairs of players in 𝑁 , describing the complete

network. 𝑔0
is the empty set and describes the empty network.

Payoffs are generated by connections between pairs of players. Direct connections generate

a normalized surplus of 1 less a linking cost 𝑐𝑖 𝑗 . Indirect connections that are intermediated

by another node generate a surplus of 𝛿 ≤ 1. Following Kleinberg et al. (2008), I assume that

connections requiring more than two steps generate a zero surplus. While there may be other

contexts where the decay of returns from connections is slower, the assumption is consistent with

the empirical evidence on returns to intermediation and brokerage in organizational networks as

reported by Burt (1992, 2007). Burt (2007) studies the returns to secondhand brokerage, that is,
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where more than one intermediary is required to connect two parties, in three different organi-

zational networks. He finds substantial returns to direct information brokerage and documents

a lack of returns to secondhand brokerage in all three groups, concluding that in the context of

organizational networks, benefits for nodes that are greater than two steps away are negligible,

and argues in support of an analytical framework that ignores such higher-order intermediation.

The costs and benefits generated by direct connections without an intermediary are split equally

between the two nodes involved; that is, each receives a payoff of
(1−𝑐𝑖 𝑗)

2
.

When indirect connections are facilitated by an intermediary, that node can capture a share of

the surplus created by the connection, akin to the returns to brokerage identified in Burt (1992)

and subsequent work. Such intermediation profits can also capture the benefits for intermediaries

in trading networks as studied in Condorelli, Galeotti, and Renou (2017), Farboodi, Jarosch, and

Shimer (2017), Choi, Galeotti, and Goyal (2017), and Manea (2018).

The value of intermediation rents depends on the extent to which the intermediary is indis-

pensable for the connection: Where many alternatives exist, rents available to an intermediary will

be lower. Formally, total rents for intermediation between 𝑖 and 𝑗 are denoted 𝛾(𝑟𝑖 𝑗(𝑔)), which is a

function of 𝑟𝑖 𝑗(𝑔), the number of intermediaries, that is, nodes that are connected to both 𝑖 and 𝑗 in

𝑔. Following Goyal and Vega-Redondo (2007) I assume that intermediary nodes capture a positive

share of the total surplus if and only if they are essential to the connection, that is, if they are on every

path connecting two nodes and thus 𝛾(𝑟𝑖 𝑗(𝑔)) = 𝛾 if 𝑟𝑖 𝑗(𝑔) = 1 and 𝛾(𝑟𝑖 𝑗(𝑔)) = 0 otherwise. This as-

sumption captures intermediation rents being competed away in the spirit of Bertrand competition

as soon as there is more than one intermediary.4 The assumption further reflects the experimental

evidence presented in Choi, Galeotti, and Goyal (2017). They study trading efficiency and surplus

division across different network configurations and find that intermediaries that are on all paths

between a buyer and a seller node extract a large share of the surplus, while intermediaries in

positions where alternatives exist receive payoffs that are close to zero.

In summary, in the connections model with intermediation rents, total payoffs for player 𝑖 from

network 𝑔 are given by

𝜋̃𝑖(𝑔) = 𝑑𝑖(𝑔)
1 − 𝑐𝑖 𝑗

2

︸        ︷︷        ︸
direct connections

+
∑
𝑗≠𝑖:

ℓ𝑖 𝑗(𝑔)=2

𝛿
1 − 𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

2

︸                      ︷︷                      ︸
indirect connections

+
∑

𝑗≠𝑖 ,𝑘≠𝑖:

ℓ 𝑗𝑘 (𝑔)=2∧𝑖 𝑗∈𝑔∧𝑖𝑘∈𝑔

𝐼{𝑟𝑗𝑘 (𝑔)=1}𝛿𝛾

︸                              ︷︷                              ︸
intermediation rents

(1)

where 𝑑𝑖(𝑔) denotes the degree of player 𝑖 in network 𝑔 and ℓ𝑖 𝑗 is the length of the shortest

path between nodes 𝑖 and 𝑗. Payoffs are the sum of the following components: (i) benefits from

4 Aside from incorporating Bertrand competition between intermediaries, zero rents in the case of two or more

intermediaries can be derived as a prediction of a model of bargaining in networks without replacement in the limit

when bargaining frictions disappear. See Siedlarek (2015). Kleinberg et al. (2008) adopt a different approach in which

intermediation benefits decay with the number of alternative paths in a more gradual way.
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Figure 1: Two Forms of Link Formation: Bilateral and Introduction

i

j

(a) Bilateral

k

i

j

(b) Introduction

Notes: A dashed line indicates a newly formed link. A solid line indicates a pre-existing

link.

direct connections net of link maintenance costs, (ii) benefits from indirect connections net of

intermediation rents paid, and (iii) intermediation rents received.

2.2 Link Costs and Introductions

The model permits two different ways of creating new connections. First, under bilateral link creation
two nodes agree to form a link between themselves. Second, under link creation by introduction a

third-party intermediary can facilitate a new connection between two nodes that are not connected

with each other but are both connected to the intermediary. Such connections have a cost advantage

over connections created by regular bilateral link formation.

Bilateral link creation allows any unconnected pair 𝑖 , 𝑗 to create a new link between themselves

if both agree. See Figure 1a. Links created in this way incur the full cost

𝑐𝑖 𝑗
2

= 𝑐
2
≥ 0 for each

node or 𝑐𝑖 𝑗 = 𝑐 in total. This cost captures, for example, investments in efforts to screen a potential

partner and develop and maintain a sufficient level of trust for a functional relationship.

In addition to bilateral link creation, I introduce link formation via introductions. An intro-

duction occurs when a new connection is created between two unconnected nodes 𝑖 , 𝑗 that share

a common neighbor 𝑘 and that neighbor acts as intermediary. See Figure 1b for an example in a

simple network of three nodes. Just like bilateral link formation, this process creates the link 𝑖 𝑗,

but in contrast to bilateral link creation by 𝑖 and 𝑗 independently, it requires the agreement of the

introducing node 𝑘.

To capture the benefits of leveraging a common partner in the new connection, introductions in

the model have a cost advantage over bilateral link creation and create links that cost 𝑐𝑖 𝑗 = (1− 𝜖)𝑐,
with 𝜖 ∈ [0, 1]. This creates a trade-off for the use of introductions: They are cheaper than regular

bilateral link creation but require the agreement of the introducing node.

Allowing for a cost difference between the two types of links requires tracking the way in which

a link was created. I therefore partition the set of links 𝑔 as follows: 𝑔𝐵 contains links created by
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bilateral link formation, 𝑔𝐼 those created by introduction. As a partition the sets satisfy 𝑔𝐵 ∪ 𝑔𝐼 = 𝑔

and 𝑔𝐵 ∩ 𝑔𝐼 = ∅. For a network to be feasible, any link in 𝑔𝐼 has to be supported by a node that is a

common neighbor connected by links in 𝑔𝐵, that is, ∀𝑖 𝑗 ∈ 𝑔𝐼 ∃ 𝑘 : 𝑖𝑘 ∈ 𝑔𝐵 ∧ 𝑗𝑘 ∈ 𝑔𝐵. We denote by

𝐺𝐼 the set of all feasible networks 𝑔 = (𝑔𝐵 , 𝑔𝐼) with introductions that satisfy this condition.

Payoffs for player 𝑖 for any given network 𝑔 = (𝑔𝐵 , 𝑔𝐼) can then be written as shown in equation 2.

𝜋𝑖(𝑔)

= 𝑑𝑖(𝑔)
1 − 𝑐

2

︸      ︷︷      ︸
direct connections

+ 𝑑𝑖(𝑔𝐼)𝜖
𝑐

2

︸    ︷︷    ︸
introductions

+
∑
𝑗≠𝑖:

ℓ𝑖 𝑗(𝑔)=2

𝛿
1 − 𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

2

︸                      ︷︷                      ︸
indirect connections

+
∑

𝑗≠𝑖 ,𝑘≠𝑖:

ℓ 𝑗𝑘 (𝑔)=2∧𝑖 𝑗∈𝑔∧𝑖𝑘∈𝑔

𝐼{𝑟𝑗𝑘 (𝑔)=1}𝛿𝛾

︸                              ︷︷                              ︸
intermediation rents

(2)

3 Efficient Networks with Introductions

Efficiency considerations in the model apply to both the process of network formation and the

resulting structure of relationships. The definition of efficiency incorporates both by tracking the

mode of link creation through the payoff equation (Eq. 2).

Definition 1. A network structure 𝑔∗ =
(
𝑔∗
𝐵
, 𝑔∗

𝐼

)
is efficient among the set of feasible networks 𝐺𝐼 if it

maximizes the sum of total payoffs across nodes net of the minimum cost incurred in creating it. That is,

𝑔∗ = argmax

𝑔∈𝐺𝐼

∑
𝑖∈𝑁

𝜋𝑖(𝑔)

We start by considering the cost of link creation. Generally speaking, introductions are more

efficient than link creation without introductions due to their cost advantage 𝜖. However, the

requirement for nodes to share a common neighbor for introductions to be feasible implies some

role for non-mediated bilateral link creation. For example, a closed triangle of three nodes requires

at least two links created by bilateral link formation. The third link closing the triangle can then be

formed by introduction. Without this restriction taking account of the dynamics of the introduction

process, only networks with all links in 𝑔𝐼 could ever be efficient.

Proposition 2 shows the interaction of the net benefits from connections and the costs from link

creation. The structure of the proof follows Jackson and Wolinsky (1996) and is provided together

with all other proofs in the Appendix.

Note that different from Jackson and Wolinsky (1996), the result requires a characterization

not just of the links of the final network structure but also of the most efficient way of creating the

network through a combination of bilateral link creation and introductions.

Proposition 2. The unique efficient network structure 𝑔∗ in the model with introductions is:

10



1. The empty network (𝑔0 , 𝑔0) if

𝑐 > 1 + 𝑛 − 2

2

𝛿, and

𝑐 >
1

1 −
(
1 − 2

𝑛

)
𝜖

2. The 𝑛-player star network (𝑔𝑆 , 𝑔0) if

𝑐 < 1 + 𝑛 − 2

2

𝛿, and

𝑐 >
1 − 𝛿
1 − 𝜖

The star network is formed by 𝑛 − 1 links created by bilateral link creation.

3. The 𝑛-player complete network (𝑔𝑆 , 𝑔𝑁 \ 𝑔𝑆) if

𝑐 <
1

1 −
(
1 − 2

𝑛

)
𝜖

, and

𝑐 <
1 − 𝛿
1 − 𝜖

To be feasible the complete network consists of a star network 𝑔𝑆 with 𝑛 − 1 links created by bilateral
link creation with all remaining links created through introductions.

The efficient network structure is unique up to a permutation of players.

The characterization focuses on the relationship between the cost per link 𝑐 and the efficiency

of introductions 𝜖. Figure 2 illustrates the parameter regions characterized in Proposition 2. As the

cost efficiency of introductions increases, the efficient network is either complete or empty: Once

link formation is productive at all, it pays to make maximum use of introductions and form the

complete network.

At 𝜖 = 0 introductions do not provide any advantage over bilateral link creation. As a result,

the efficient structures and parameter ranges correspond to those in Jackson and Wolinsky (1996).

However, as the cost advantage of introductions 𝜖 increases, differences between Jackson and

Wolinsky (1996) and the setting with introductions emerge.

Initially, as 𝜖 increases from zero, it becomes more advantageous to close open triangles and

the cost range for which the star network is efficient decreases, while the range for the complete

network increases. Above a certain level of cost efficiency, the star network is not efficient for

any level of linking cost anymore and only either the empty network or the complete network

remains efficient. The result shows the extent to which the cost advantage of introductions pushes

efficient structures toward high density and high levels of clustering. The efficient configuration is

11



Figure 2: Efficient Network Configurations (𝜖 = 1)

c

nδ
2(1−δ)+nδ

ϵ

1

Empty Network

Complete Network

Star

0

1 + n−2
2 δ

1− δ

1

c = 1−δ
1−ϵ

c = 1

1−(1− 2
n )ϵ

Notes: This chart illustrates the efficient network configurations for different parameter

ranges. Solid lines separate the areas where different configurations are efficient. Dotted

lines are auxiliary and added to facilitate labeling and reading of axis labels.

independent of the intermediation rent parameter 𝛾 as it only presents a transfer between players,

without efficiency implications in the sense of Definition 1. The results given here provide a

benchmark for subsequent analysis, which studies the incentives for players to create and remove

links from the network.

4 Stable Networks with Introductions

This section presents results on networks that are stable when introductions are available. I

build on the pairwise stability concept of Jackson and Wolinsky (1996) by incorporating a suitable

extension that allows for introductions and transfers.

The analysis of introductions requires the inclusion of transfers to the introducing player in

order to compensate that player for the potential loss of intermediation benefits. For illustration,

consider the payoff implications of the new link that is created. The new link shortens the distance

between the two players being introduced to one step, yielding an increase in connection benefits.

However, the new link does not generate any additional benefits for the introducing player as he is

already connected to both. Indeed, the new link results in the introducing player no longer being

needed for the connection between the players introduced, and thus he will lose out. Introductions

12



by themselves are at best payoff neutral for the introducing player, and transfer payments are

necessary to make any introduction profitable for the introducer. As a result, the stability concept

I use here is one that considers deviations with transfers as proposed in Bloch and Jackson (2006).

Their stability concept recognizes unilateral link destruction and bilateral link creation. I extend

their setting with an additional stability condition to account for link creation via the introduction

process.

Definition 3 (Myopic stability under introductions). A network 𝑔 is myopically stable with introduc-
tions if:

a. (Destruction) ∀ 𝑖 𝑗 ∈ 𝑔,

𝜋𝑖(𝑔) + 𝜋 𝑗(𝑔) ≥ 𝜋𝑖(𝑔 − 𝑖 𝑗) + 𝜋 𝑗(𝑔 − 𝑖 𝑗)

b. (Bilateral Link Formation) ∀ 𝑖 𝑗 ∉ 𝑔,

𝜋𝑖(𝑔) + 𝜋 𝑗(𝑔) ≥ 𝜋𝑖(𝑔 + 𝑖 𝑗) + 𝜋 𝑗(𝑔 + 𝑖 𝑗)

c. (Introduction) ∀ {𝑖 , 𝑗 , 𝑘 : 𝑖𝑘 ∈ 𝑔 ∧ 𝑗𝑘 ∈ 𝑔 ∧ 𝑖 𝑗 ∉ 𝑔},∑
𝑣∈{𝑖 , 𝑗 ,𝑘}

𝜋𝑣(𝑔) ≥
∑

𝑣∈{𝑖 , 𝑗 ,𝑘}
𝜋𝑣(𝑔 + 𝑖 𝑗)

The first two conditions correspond to those used for networks that are pairwise stable with
transfers, as analyzed in Bloch and Jackson (2006). Note that destruction of a link in 𝑔𝐵 can imply

the destruction of additional links in 𝑔𝐼 if the destroyed link renders these introductions infeasible.

The definition includes a third condition, which requires that in a stable network there be no

opportunities for profitable introductions. That is, there cannot be a triplet of nodes that form an

open triangle jointly benefiting from adding the missing link, with a lower cost (1 − 𝜖).
Note that the third condition — introduction — allows a deviation by a coalition of three

agents. This kind of deviation arguably requires an additional degree of coordination beyond

the usual bilateral deviations familiar from Jackson and Wolinsky (1996) and other papers. In

this paper, such deviations are permitted if they reflect introductions; that is, the three nodes are

already connected on a subnetwork induced by themselves and are forming the missing link. In

the context of international trade, Chaney (2014) shows that such a process can successfully explain

the dynamics of how trade networks develop over time.5

All three conditions allow for transfers between the players involved by considering the sum
of payoffs rather than individual payoffs. This also applies to link destruction in order to maintain

5 See also the discussion of triplet-wise deviations in Section 6.2 of Ambrus and Elliott (2021). They allow deviations

by three nodes as long as they create the new links among themselves and thus facilitate risk-sharing among themselves.
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symmetry between link creation and link destruction.6 Note that such transfers do not need to

involve a monetary exchange at the time of the introduction. For example, a debt might be incurred

in the form of owing a favor to another party in the future (Jackson, Rodriguez-Barraquer, and

Tan, 2012).

Allowing for transfers in link destruction reduces the set of profitable deviations of this type:

All link removals that are jointly profitable necessarily involve at least one player for whom it is

unilaterally profitable; however, if one player loses out from the removal of the link, Definition 3

requires that the damage done to the other side involved in the link not be too high. In this sense,

the solution concept with transfers is weaker than that without transfers as far as link destruction

is concerned.

The following section analyzes networks that are stable when introductions are feasible by (i)

considering the stability properties of the efficient configurations (Section 4.1) and (ii) characteriz-

ing the properties of stable networks in general (Sections 4.2 and 4.3).

4.1 Stability of Efficient Networks

This section derives the stability properties of the configurations that are possible efficient ar-

rangements for some parameter ranges. The analysis starts with one of the possible efficient

configurations — the empty network, the star network, and the complete network — and charac-

terizes the parameter restrictions necessary for each configuration to be stable. The details of the

derivation of the conditions have been relegated to the Appendix, Section A.2.

Proposition 4. The three efficient network structures are myopically stable with introductions if the following
conditions hold:

1. The empty network (𝑔0 , 𝑔0) is stable if

𝑐 ≥ 1

2. The star network (𝑔𝑆 , 𝑔0) is stable if

𝑐 ≥ max

{
1 − (1 − 𝛾)𝛿, 1 − 𝛿

1 − 𝜖

}
, and

𝑐 ≤ 1 + 𝑛 − 2

2

(1 + 𝛾)𝛿

6 See footnote 5 in Bloch and Jackson (2006) for a discussion of this issue.
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3. The complete network (𝑔𝑆 , 𝑔𝑁 \ 𝑔𝑆) is stable if

𝑐 ≤ min

{
1 − 𝛿
1 − 𝜖

,
1

1 −
(
1 − 2

𝑛

)
𝜖

}

Table 1: Parameter Ranges for Efficient and Myopically Stable Networks

Network Efficient Myopically Stable

Empty 𝑐 > 1 + 𝑛−2

2
𝛿, and 𝑐 ≥ 1

𝑐 > 1

1−(1− 2

𝑛 )𝜖
Star 𝑐 < 1 + 𝑛−2

2
𝛿, and 𝑐 ≤ 1 + 𝑛−2

2
(1 + 𝛾)𝛿,

𝑐 > 1−𝛿
1−𝜖 𝑐 ≥ 1 − (1 − 𝛾)𝛿, and

𝑐 ≥ 1−𝛿
1−𝜖

Complete 𝑐 < 1

1−(1− 2

𝑛 )𝜖
, and 𝑐 ≤ 1

1−(1− 2

𝑛 )𝜖
, and

𝑐 < 1−𝛿
1−𝜖 𝑐 ≤ 1−𝛿

1−𝜖

Note: This table lists the parameter conditions under which the empty, star, and complete

networks are efficient and myopically stable.

Combining the results derived above, Table 1 lists the parameter ranges for stability next to the

corresponding thresholds for efficiency, which are derived in Section 3.

The parameter thresholds for stability are illustrated as solid lines in Figure 3. The chart

replicates the efficiency thresholds derived above and shown in Figure 2 to allow answering of the

question whether or not the efficient network is stable across the parameter space.

The chart shows that whenever the empty network is efficient, then that network is also

myopically stable with introductions. Likewise, whenever the complete network is efficient

(𝑐 ≤ min

{
1−𝛿
1−𝜖 ,

1

1−(1− 2

𝑛 )𝜖

}
), that network is also stable. However, note that while for the com-

plete network the reverse is also true — the complete network is efficient whenever it is stable —

this is not the case for the empty or the star network. Both types of network can be stable in areas

of the parameter space where they would not be the efficient network.

Of note is the shaded area toward the bottom left of Figure 3. In this area, none of the three

efficient structures is stable and, in particular, the star network, which is the efficient network

structure in this parameter range, is not stable. Thus, in this area of the parameter space any stable

network will necessarily be inefficient.

In addition, Figure 3 shows that there are parameter ranges where multiple networks can be

stable. For example, in the center-left of the chart, both the star network and the empty network

are stable; in the center-right, both the complete network and the empty network are stable. There

may be other networks that are also stable. Multiplicity implies that even if an efficient structure

is stable, it does not necessarily follow that this is the network outcome that is achieved. Agents
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would need to coordinate to achieve the efficient network and inefficient, but stable, network

structures can be formed instead.7

Figure 3: Myopic Stability of Empty, Star, and Complete Networks

c

nδ
2(1−δ)+nδ

ϵ

1

Empty

Star

0

1 + n−2
2 δ

1− δ

1

c = 1−δ
1−ϵ

c = 1

1−(1− 2
n )ϵ

1− (1− γ) δ

1 + n−2
2 (1 + γ)δ

Empty & Star

Complete

Empty &
Complete

Empty & Star

Notes: This chart illustrates the myopic stability of the empty, star, and complete networks.

Solid lines separate the areas where different configurations are stable. Dotted lines are

auxiliary and added to facilitate labeling and reading of axis labels. The thick lines (dashed

and solid) are the solid lines replicated from Figure 2 and separate the parameter ranges

for which different network configurations are efficient. The horizontal thick dashed line

at 𝑐 = 1 + 𝑛−2

2
𝛿 indicates the boundary between the parameter ranges where the star

network (below) and the empty network are stable (above). The shaded area marks the

parameter range where none of the three networks is stable. In this area, the star network

is efficient but not stable.

The divergence between efficiency and stability is due to externalities and the myopic stability

notion employed. Externalities exist where players that form or destroy a link do not experience

the full change in payoff that this generates. For example, in a star network, periphery nodes

forming a new bilateral link benefit from reducing intermediation rents paid to the center node,

but do not account for the fact that this is a loss for the node in the center and thus merely a transfer

from the perspective of efficiency. This particular externality is behind the shared area in Figure 3

in which the efficient network is not stable. The misalignment between efficiency and stability is

familiar from the literature on strategic network formation such as Jackson and Wolinsky (1996):

When considering whether to create or destroy a link, the players involved assess the impact only

on their own payoffs and disregard the effect on other players, which can lead to both too many

and too few links (Bloch and Jackson, 2007).

7 I thank an anonymous referee for making this point.
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Myopia in the stability notion is a further source of inefficiency. For example, when considering

deviations from the empty network, agents only assess the immediate payoff changes generated

by the first link created, ignoring possible future deviations creating larger networks. This effect

means that the empty network is efficient if 𝑐 > 1+ 𝑛−2

2
𝛿, but stable at the lower cutoff 𝑐 > 1, covering

parts of the parameter space where other network structures would be efficient. Farsighted stability

notions can help overcome this friction (Dutta, Ghosal, and Ray, 2005; Herings, Mauleon, and

Vannetelbosch, 2009).

4.2 Stable Networks’ Maximum Distance and Connectedness

Next, I briefly study the maximum distance of networks that are pairwise stable with introductions.

I identify an upper bound on the number of connections of the two highest degree nodes that are

a distance of more than three steps apart.

Proposition 5. Let 𝑔 be a network that is pairwise stable with introductions. Let (𝑖 , 𝑗) be the pair of nodes
with the highest sum of degrees 𝑑𝑖(𝑔) + 𝑑 𝑗(𝑔) such that ℓ𝑖 𝑗 > 3. Then:

𝑑𝑖(𝑔) + 𝑑 𝑗(𝑔) ≤ −2 [(1 − 𝑐)]
𝛿(1 + 𝛾) (3)

The result shows that even in settings where an isolated link is not profitable (1 − 𝑐 < 0),

sufficiently high intermediation benefits can exert a force toward limiting the diameter of a network

by encouraging higher degree nodes that are far away from each other to connect and benefit from

intermediating a number of indirect connections.

Note that the result leverages both the returns from indirect connections and the intermediation

rents for nodes that bring together otherwise disconnected parts of the network. The threshold

degree is falling as payoffs for indirect connections 𝛿 and returns for intermediation 𝛾 increase.

In contrast, if 𝛿 → 0 the threshold tends to infinity if link costs exceed the direct benefits of a link

(𝑐 > 1). Finally, once link costs are sufficiently small, the result implies that any stable network will

be empty or fully connected.

Corollary 6. If link costs are sufficiently small such that 𝑐 < 1 + 𝛿 1+𝛾
2

, any non-empty network that is a
pairwise stable network with introductions will be connected.

4.3 Stable Networks Exhibit Minimum Level of Clustering

This section considers the impact of introductions on the clustering properties of stable networks.

Clustering is a measure of the local cliquishness or cohesiveness of a network and measures

the extent to which a triplet of nodes 𝑖 , 𝑗 , 𝑘 in which 𝑘 is connected to both 𝑖 and 𝑗 forms a fully

connected triangle; that is, there is a link that connects 𝑗 to 𝑘. By definition, wherever introductions
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take place, they create such closed triangles and thereby contribute to higher clustering. I therefore

ask which, if any, possible introductions will remain unused in stable networks. I then extend the

analysis to derive a lower bound for local clustering coefficients in stable networks.

Lemma 7 shows that the payoff from an introduction of 𝑖 and 𝑗 by 𝑘 depends on the local

network environment only through nodes that are neighbors of either 𝑖 or 𝑗 but not both.

Lemma 7. Consider a network 𝑔 such that there is an opportunity for 𝑘 to introduce 𝑖 and 𝑗. Let Δ𝜋𝑖 𝑗𝑘 be
the change in total payoffs to 𝑖 , 𝑗 , 𝑘 from creating the introduction. Then

Δ𝜋𝑖 𝑗𝑘 =1 − (1 − 𝜖)𝑐 − 𝛿

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

𝑘𝑢∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 + 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]

− 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

∧𝑘𝑢∈𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}
𝛾

2

The result decomposes the overall effect into several constituents based on the local network

structure around the introduction: first, the payoff effect from the new direct link between 𝑖 and 𝑗

that replaces the indirect connection via 𝑘 with a direct link (Figure 4a); second, the positive payoff

effect from the new indirect link between any nodes not directly connected to 𝑘 and connected to

exactly one of the nodes to be introduced 𝑖 , 𝑗, where no indirect link previously existed (Figure 4b);

third, the positive payoff effect from such a newly created indirect link where that new link helps

avoid intermediation rents previously paid to a third node (Figure 4c); and fourth, the negative

payoff effect from such a newly created indirect link where that link means that the introducing

node 𝑘 loses intermediation rents previously captured (Figure 4d). Note that all but the first of

these components relate to nodes that are connected to exactly one of the nodes to be introduced.

Lemma 7 shows that this decomposition fully captures the payoff implications for the three nodes

involved in an introduction.

It then follows from Lemma 7 that we can bound the payoff from an introduction from below

by focusing on the number of neighbors of 𝑖 or 𝑗 that can generate a negative payoff for {𝑖 , 𝑗 , 𝑘}
jointly.

Proposition 8. Consider a network 𝑔 such that there is an opportunity for 𝑘 to introduce 𝑖 and 𝑗. Let 𝜇 be
the number of nodes 𝑢 such that (i) 𝑢𝑘 ∈ 𝑔, (ii) 𝑢𝑖 ∈ 𝑔 or 𝑢𝑗 ∈ 𝑔, but not both, and (iii) 𝑘 is essential for the
indirect connection between 𝑢 and 𝑗 (or 𝑢 and 𝑖), respectively. If 𝑔 is myopically stable with introductions
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Figure 4: Payoff Implications of an Introduction
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Notes: This chart illustrates the payoff implications from creating a new link by introduc-

tion for the three nodes involved, here 𝑖, 𝑗 and 𝑘, as derived in Lemma 7. A dashed line

indicates the newly formed link by introduction. A solid line indicates a pre-existing link.

+ve and -ve indicate the sign of Δ𝜋𝑖 𝑗𝑘 , the joint payoff change for nodes 𝑖, 𝑗, and 𝑘, where it

is unambigious. Figure 4a illustrates the new direct link between nodes 𝑖 and 𝑗, replacing

the indirect connection via node 𝑘. Figure 4b shows a new indirect connection of length

two between nodes 𝑗 and 𝑙 via node 𝑖, which previously had a shortest path of length

three. Both nodes 𝑗 and 𝑖 earn increased payoff from the new connection. Figure 4c shows

the avoidance of intermediation rents. Prior to the new link 𝑖 𝑗 being formed, nodes 𝑗 and

𝑙 are connected via essential intermediary 𝑚, paying intermediation rent. The new link

𝑖 𝑗 creates a second path of length two and thus no more rent is paid, increasing payoffs

for 𝑗. Figure 4d illustrates the loss of intermediation rents for 𝑘. The new link 𝑖 𝑗 creates

a second path of length two between 𝑗 and 𝑙, removing the intermediation rents paid to

𝑘 before. Some of the savings are captured by node 𝑙 and, thus, lost to the three nodes of

interest 𝑖, 𝑗, and 𝑘.
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then

𝜇 ≥ 𝜇∗ ≔

⌊
2

1 − (1 − 𝜖)𝑐 − 𝛿
𝛿𝛾

⌋
Intuitively, this result describes a necessary condition for the existence of open introductions

in stable networks in the form of a lower bound on 𝜇, the number of nodes that are connected

to the introducing node 𝑘 and exactly one of the nodes to be introduced (𝑖 or 𝑗). Such nodes

generate intermediation payoffs for 𝑘 that would be partially lost by closing the open triangle (see

Figure 4d). Conversely, the result implies that any introduction where this condition is not met

will be profitable to conduct. As we will see below, this leads to high degrees of clustering.

In terms of the application to business networks, this result shows that introductions and re-

ferrals tend to be profitable for the business involved and can help create networks with closed

triangles. Where introductions are feasible but not conducted, they must protect significant inter-

mediation rents for the introducing business, so that it is unprofitable to create the introduction.

Note that for the lower bound 𝜇∗
to be positive requires an introduction to be profitable in

isolation, that is, in a setting without any neighbor to 𝑖 𝑗𝑘 such that 1 − (1 − 𝜖)𝑐 − 𝛿 > 0. We

will focus on this case in the subsequent discussion. If introductions by themselves are not

profitable to the three nodes involved even without any of the additional effects identified above,

the results below do not apply. Conditional on isolated introductions being profitable, 𝜇∗
increases

as intermediation profits 𝛾 become less important, because the loss of intermediation benefits

to the introducing node is the friction that can prevent introductions from being profitable. In

addition, 𝜇∗
is increasing in 𝜖, the cost advantage of introductions relative to direct bilateral link

creation.

Proposition 8 connects any unused introduction opportunity to a minimum number of nodes

that form a closed triangle. We can now establish a lower bound on the local clustering coefficient

of any node in a myopically stable network based on the underlying parameters of the model. To

define terms, let the individual clustering coefficient 𝒞𝑘 be the share of triplets formed by node 𝑘

and two of its neighbors, such that the neighbors themselves are directed.

𝒞𝑘 ≔
|𝑖 ≠ 𝑗 ≠ 𝑘 : 𝑘𝑖 ∈ 𝑔, 𝑘 𝑗 ∈ 𝑔, 𝑖𝑗 ∈ 𝑔 |

|𝑖 ≠ 𝑗 ≠ 𝑘 : 𝑘𝑖 ∈ 𝑔, 𝑘 𝑗 ∈ 𝑔 |

Then the following result holds.

Proposition 9. Let 𝑔 be a network that is myopically stable with introductions and let 𝜆∗ ≔ ⌊ 𝜇
∗

2
⌋ + 1.

For any node 𝑘 ∈ 𝑁 with degree 𝑑𝑘 ≥ 2 the local clustering coefficient 𝒞𝑘 is bounded below by 𝒞(𝑑𝑘)
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such that

𝒞𝑘 ≥ 𝒞(𝑑𝑘) =


1 if 𝑑𝑘 ≤ 𝜆∗⌊
𝑑𝑘
𝜆∗

⌋
(𝜆∗−1)𝜆∗

(𝑑𝑘−1)𝑑𝑘 if 𝑑𝑘 > 𝜆∗

Figure 5 illustrates Proposition 9 for a simple example of a central node with degree 12.8 At the

bound, the local neighborhood around node 𝑘 forms a subnetwork that maximizes the number

of cliques with at least 𝜆∗
nodes each. In such a subnetwork, each node is connected to every

other node belonging to the same clique, but not connected to any of the neighbors belonging to

other cliques. As a consequence, any open triangle of links around 𝑘 will involve two nodes that

are neighbors of 𝑘 and that each have at least 𝜇∗
neighbors that they share with 𝑘 and that they

do not share with each other. By Proposition 8, any such open triangles between cliques in the

neighborhood of 𝑘 is myopically stable against introductions that would create a closed triangle.

The bound can be reached exactly if 𝜇∗
is even and 𝑑𝑘 is divisible by 𝜆∗

so that all neighbors of

𝑘 are part of a clique of exactly size 𝜆∗
. If 𝜇∗

is odd, then stability requires that at most one clique

can be of exactly size 𝜆∗
, and all remaining cliques have to be of size 𝜆∗ + 1. Furthermore, if 𝑑𝑘

is not divisible by 𝜆∗
, the remainder of the nodes will have to be distributed across the cliques to

ensure stability.

The higher 𝜇∗
, the higher the lower bound on local clustering 𝒞(𝑑𝑘). That is, as introductions

become more profitable, minimum clustering increases. Depending on the underlying parameters,

minimum clustering might be zero as in Figure 5(a) or relatively high as in Figure 5(e). In addition,

as the degree of 𝑘 increases, the lower bound on clustering converges toward zero.

The driving force behind the minimum clustering in this result is the introduction mechanism

and not the presence of intermediation rents alone. This mechanism is in contrast to the results

in Goyal and Vega-Redondo (2007), who focus on the incentives of disconnected players to create

a new link bilaterally in order to avoid paying intermediation rents. In my model, the incentive

for triadic closure arises from the benefits that a direct link offers relative to an indirect link if

the intermediating player can be sufficiently compensated for the loss of intermediation benefits.

Indeed, in Goyal and Vega-Redondo (2007) a higher intermediation rent parameter would likely

increase the tendency for links to be formed,9 whereas in Proposition 9 higher intermediation rents

per connection are associated with a lower 𝜇∗
. This implies a lower minimum clustering coefficient

and consequently higher realized intermediation payoffs for the central node.

8 Möhlmeier, Rusinowska, and Tanimura (2016) generate similar windmill-shaped networks or friendship graphs

from very different mechanics in their model of network formation with both positive and negative externalities. In

Ambrus and Elliott (2021), friendship graphs are efficient structures for risk-sharing if common friends are required to

enforce risk-sharing agreements.

9 In their paper the authors hold the share of surplus captured by essential intermediaries fixed.
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Figure 5: Example of Minimum Clustering with Cliques of Even Size
𝜇∗

2
+ 1

(a) 𝜇∗ = 0 𝒞 = 0 (b) 𝜇∗ = 2 𝒞 = 1

11
(c) 𝜇∗ = 4 𝒞 = 2

11

(d) 𝜇∗ = 6 𝒞 = 3

11
(e) 𝜇∗ = 10 𝒞 = 5

11

Notes: This chart illustrates node allocation with minimum clustering as per Proposition 9

for different values of 𝜇∗. To achieve the lower bound on clustering, nodes form cliques

around the central node.

4.4 Stable Networks Protect Structural Holes

The previous sections showed that stable networks in the link formation model with introductions

tend to be connected and show high degrees of clustering. In this section, I will focus on incentives

for highly connected nodes to protect structural holes. The concept of structural holes as described

in Burt (1992, 2007) refers to “a gap between two individuals” (Burt, 1992) with positive implications

for a third node that fills the gap and facilitates brokerage. In the context of the connections

model with intermediation analyzed in this paper, brokerage opportunities are created when a

node intermediates an indirect connection between two other nodes and acts as the unique such

intermediary.

A useful measure of how important an intermediary node is for the connection between pairs

of nodes in the network is called betweenness (Jackson, 2008, see, e.g., p. 39). The betweenness

centrality of a node is the average fraction of shortest paths between all other pairs of nodes in the

network on which the node acts as an intermediary. For the purposes of this model, we employ a

modified local betweenness measure that reflects the assumption represented in the model’s payoff

function. The measure restricts attention to paths of up to length two and in addition only values

connections where the node is the only intermediary. It thus captures the share of connections

for which the intermediary extracts an intermediation rent. Formally, let ℬ𝑘 be the share of paths
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between pairs of nodes in the neighborhood of node 𝑘 for which node 𝑘 is essential.

ℬ𝑘 ≔
|𝑖 ≠ 𝑗 ≠ 𝑘 : 𝑘𝑖 ∈ 𝑔, 𝑘 𝑗 ∈ 𝑔, 𝑖𝑗 ∉ 𝑔, 𝑟𝑖 𝑗(𝑔) = 1|

|𝑖 ≠ 𝑗 ≠ 𝑘 : 𝑘𝑖 ∈ 𝑔, 𝑘 𝑗 ∈ 𝑔 |

The measure ℬ𝑘 captures the share of connections involving neighbors of 𝑘 for which it extracts an

intermediation rent for brokering the connection between them. It serves as a measure of structural

holes around 𝑘 for which it profitably acts as a broker. Then the following result holds.

Proposition 10. Let 𝑔 be a network that is myopically stable with introductions and let 1−(1− 𝜖)𝑐− 𝛿 > 0

so that 𝜇∗ > 0. Then,

1. For an open triangle of nodes 𝑖, 𝑗, and 𝑘 such that 𝑖 and 𝑗 are connected to 𝑘 and not directly connected
themselves, node 𝑘 is the essential intermediary between 𝑖 and 𝑗.

2. Furthermore,

ℬ𝑘 = 1 − 𝒞𝑘

The result follows from Lemma 7, which shows that the payoff change from an introduction

is strictly positive unless it threatens a sufficient number of indirect connections for which the

introducing agent is essential. Thus, in stable networks every pair of nodes in the neighborhood

of another node has either a direct connection or an indirect connection for which the third

node acts as essential intermediary. Importantly, there are no indirect connections for which the

intermediary is not essential. This partition into triangles that are either closed or open and

involve essential intermediaries causes the direct relationship between the clustering coefficient

and the betweenness measure. In an application to business networks, this result suggests that

relationship networks can exhibit nodes acting as bridges connecting otherwise unconnected parts

of the network and earning returns on exploiting their position as in Burt (1992). Evidence for such

returns has been documented in different settings, for example, in networks of R&D collaboration

(Ahuja, 2000; Owen-Smith and Powell, 2004).

The result implies that given a level of clustering, the number of connections for which inter-

mediation rents are captured is maximized in stable networks. Figure 6 illustrates this point by

comparing two neighborhoods around node 𝑘 with the same level of clustering. In Figure 6(a),

node 𝑘 acts as essential intermediary for every open triangle, with 𝑘 bridging the maximum num-

ber of structural holes. In Figure 6(b), while the number of links among neighbors is the same,

there are no open triangles for which 𝑘 earns intermediation rents and thus no structural holes.

Proposition 10 shows that the second structure cannot be stable in the model with introductions.

Indeed, given the clustering coefficient, only the first neighborhood can be stable.
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Figure 6: Example of Neighborhood With and Without Structural Holes

(a) 𝒞𝑘 = 6

15
ℬ𝑘 =

9

15

k

(b) 𝒞𝑘 = 6

15
ℬ𝑘 =

0

15

k

Notes: This chart shows a simple example of a neighborhood around node 𝑘 with a given

level of clustering. The subchart (a) shows a high level of structural holes as measured

using the betweenness of node 𝑘, while the second subchart (b) has zero betweenness with

the same level of clustering. The point the chart makes is that the presence of structural

holes is a network property that is independent of clustering. Proposition 10 shows that

in the model with introductions only the first configuration in which structural holes are

protected is stable.

4.5 Comparison with Jackson and Rogers (2007)

The preceding analysis explains how the combination of introductions and intermediation rents

can result in networks with high degrees of clustering (Section 4.3) while protecting structural

holes (Section 4.4). The finding of high degrees of clustering is not a unique prediction. Other

models of network formation are also able to generate high degrees of clustering. Closely related to

the present paper, Jackson and Rogers (2007) show in a random graph model of network formation

how a process of linking to friends-of-friends can result in significant clustering. They find

that a suitable combination of fully random and friends-of-friends linking can result in average

clustering coefficients that match well those of a number of example networks from different

domains, including the World Wide Web, academic citations, coauthorship, high school romance,

and others.

The key conceptual difference between Jackson and Rogers (2007) and the present paper is

that the former is a model of network formation based on a stochastic process of network growth,

whereas the latter adopts a strategic approach that explicitly models the payoffs to individuals from

any given network structure. Despite the differences between the two approaches, both provide

useful insights and are complementary in nature. Relative to the random network formation

approach, the strategic approach permits insights into the incentives for link formation resulting

from an underlying structural description of costs and benefits. The strategic approach also

permits a direct characterization of efficient network structures, whereas in random graph models,

efficiency can be inferred only indirectly.

In addition, by definition random graph models of network formation generate a random

network, that is, a distribution of networks, which can be characterized to show certain stochastic

24



properties, like the mean degree or the probability of a giant component, often using mean-field

approximation. For example, Jackson and Rogers (2007) are able to derive their results on network

clustering by characterizing the expected share of transitive triples or the clustering coefficient of the

average node (Jackson and Rogers, 2007, Theorem 2). By contrast, the clustering characterization

of Proposition 9 in this paper applies to each node and does not describe an average over the whole

network.

The key contribution of this paper beyond the model in Jackson and Rogers (2007) relates

to predictions concerning network bridges and structural holes. As shown in Proposition 10,

the model in this paper explicitly connects both clustering and the existence of structural holes

bridging otherwise unconnected parts of the network. As a result, the model can combine densely

connected subnetworks with structural holes generating substantial intermediation rents for the

intermediary nodes. As illustrated in Figure 6, this combination of clustering and structural holes

is not a given. A key insight from the model with introduction is that it provides the incentives

for intermediaries to exploit introductions where profitable, but otherwise protect their brokerage

opportunities.

Jackson and Rogers (2007) do not target structural holes in their analysis and their model does

not provide results regarding the betweenness or other centrality measures that could proxy for

the structural holes idea. I argue that the random nature of the linking process suggests that we

can expect fewer structural holes bridged by essential intermediaries than in the present model.

The random linking process in Jackson and Rogers (2007) achieves high clustering through a

link formation mechanism combining fully random meetings with friends-of-friends meetings.

When a link is created via the friends-of-friends mechanism, it automatically generates a closed

triangle, similar to the introductions in the present model. However, that link is placed randomly

among the available friends and randomly among their neighbors. Thus, this process does not

preferentially create closed triangles where the intermediary node is not essential, nor, vice versa,

does it preferentially protect open triangles where they support significant intermediation rents. In

terms of Figure 6, we can therefore expect an outcome that is on average somewhere in between the

two extreme cases shown. This is in contrast to the model in this paper, which includes incentives

for nodes to create the structure in Figure 6(a) with structural holes and high intermediation rents.

5 Conclusion

This paper analyzes network formation with introductions in a connections model with interme-

diation rents. Specifically, the paper considers a model of network formation in which players that

are unconnected but share a direct neighbor can be “introduced” by that neighbor. Links created

by an introduction offer payoff advantages over links created bilaterally, but they can threaten

intermediation rents for the introducing node. The trade-off between the costs and benefits limits
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the extent to which nodes take advantage of introductions to create highly clustered networks via

triadic closure. The paper shows first that efficient network structures are either empty, star, or

complete networks, as in the baseline connections model of Jackson and Wolinsky (1996). The

paper then conducts a stability analysis using a suitable adapted notion of pairwise stability with

introductions, to study the incentives involved in introductions and the impact on network out-

comes. As expected there can be a gap between efficiency and stability due to the externalities

involved in network formation.

The myopic stability analysis of the model with introductions finds that stable networks tend

to be connected in a single component, which is consistent with the short distances often found in

the data. In addition, it shows how the possibility of introductions creates a lower bound on the

level of clustering, providing a plausible mechanism for the observed high levels of clustering in

many real-world networks. Finally, it shows that where clustering is not complete and there are

open triangles in stable networks, these protect intermediation rents generated by structural holes.

Jointly, under certain parameters, stable networks can exhibit both small world properties (Watts

and Strogatz, 1998) and bridging agents protecting structural holes (Burt, 1992).

The combination of clustering with the existence of bridging nodes that confer substantial

intermediation returns to the nodes operating them as illustrated in Figure 5 relies on having both

intermediation rents and introductions in the model. If introductions do not offer a cost advantage

(𝜖 = 0), then whether or not an open triangle is closed depends only on the bilateral net benefit

1 − 𝑐 − 𝛿 plus changes to intermediation returns. Likewise, if there are no intermediation rents

(𝛾 = 0), then by Lemma 7 there is no loss for introducing players. This implies that the lower

bound of closed triangles required to support any open triangle in the sense of Proposition 8 goes

to infinity, resulting in all feasible introductions taking place. There would be complete clustering

and no structural holes remaining.

Note that while the tendency for introductions to lead to connected components and increased

clustering captures features of real-world organization and business networks (Kogut and Walker,

2001), the analysis also highlights the limits to this process. Specifically, the process of link creation

by introduction stops with bridge agents that are essential and connect otherwise disconnected

parts of the network. If these individuals earn sufficiently high intermediation rents, then their

incentives will be to prevent connections forming between the two parts on either side of the

bridge to protect these rents. The stability analysis thus provides a plausible explanation for

network connectedness, clustering and the persistence of returns to bridging agents that connect

across structural holes, which offers a novel contribution to the literature.

The paper offers insights into how plausible local dynamics in link creation can lead to clus-

tering, as groups of nodes that are already connected to some degree form additional beneficial

connections among themselves. In applications, such network-based coordination may explain the

high levels of clustering observed in real-world networks, even in settings where it may be difficult
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for two players to connect independently. More generally, the analysis underlines how the involve-

ment of additional nearby players with suitable transfers in link creation may help to deal with

externalities that tend to push equilibrium outcomes toward over- or under-connected networks,

as in Bloch and Jackson (2007). Future research may consider how these insights generalize to, for

example, allowing coalitions of more than three players to form connected cliques.
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Appendix

A Proofs

A.1 Proof of Proposition 2 — Efficient Network Configurations

Proof. The proof adapts the efficiency results for the standard connections model described in

Jackson (2008, Chapter 6.3). An important difference here is the distinction between bilateral link

creation and introduction, which requires a discussion of link costs. For any component in a given

network 𝑔, Lemma 11 provides a lower bound on the number of links that need to be created

bilaterally. The proof is immediate and omitted here.

Lemma 11. The minimum number of links created bilaterally to create a component of 𝑘 nodes is 𝑘 − 1. The
minimum cost to form a component of 𝑘 nodes with 𝑚 ≥ 𝑘 − 1 links is 𝑚𝑐 − (𝑚 − (𝑘 − 1)) 𝜖𝑐.

Having established the minimum-cost way to form any network 𝑔, we can proceed to the proof

of the efficient network structures.

Case 1: c > 1−𝜹
1−𝝐 First, consider the case with 𝑐 > 1−𝛿

1−𝜖 . I will argue that the star is the efficient

configuration to connect 𝑘 nodes in this case. A star network of 𝑘 nodes incurs link costs of exactly

(𝑘 − 1)𝑐 and generates a net benefit after costs of link formation of:

(𝑘 − 1) [1 − 𝑐] + (𝑘 − 1)(𝑘 − 2)
2

𝛿 (4)

Now, any other configuration connecting 𝑘 nodes with 𝑚 ≥ 𝑘 − 1 links will generate a net benefit

of at most

𝑚 [1 − 𝑐]︸     ︷︷     ︸
direct connections

+
[
(𝑘 − 1)(𝑘 − 2)

2

− (𝑚 − (𝑘 − 1))
]
𝛿︸                                      ︷︷                                      ︸

indirect connections

+ [𝑚 − (𝑘 − 1)] 𝜖𝑐︸             ︷︷             ︸
cost savings from introductions

(5)

The first component in equation 5 represents the net benefits from direct links and the second

component reflects the upper bound of the benefits that can be derived from any indirectly con-

nected nodes, assuming that all nodes are at most a distance of two steps from each other. The

third component reflects the possible cost savings from using the maximum feasible number of

links created through introduction 𝑚 − (𝑘 − 1) as per Lemma 11. Subtracting equation 4 from 5

and rearranging yields the maximum possible change in surplus from connecting 𝑘 nodes with
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𝑚 ≥ 𝑘 − 1 links:

(𝑚 − (𝑘 − 1)) [1 − 𝑐] − (𝑚 − (𝑘 − 1)) 𝛿 + [𝑚 − (𝑘 − 1)] 𝜖𝑐 (6)

= (𝑚 − (𝑘 − 1)) [1 − 𝛿 − (1 − 𝜖)𝑐] (7)

The first half of this expression is positive as 𝑚 ≥ 𝑘 − 1. The second half of the expression is

strictly negative as 𝑐 > 1−𝛿
1−𝜖 . It follows that adding links to the star strictly decreases surplus, unless

𝑚 = 𝑘 − 1. It is thus established that if 𝑐 > 1−𝛿
1−𝜖 any efficient network consists of star components

and isolated nodes.

Next, we further restrict the set of candidate efficient networks for 𝑐 > 1−𝛿
1−𝜖 by establishing that

there is either a single star component including all nodes or an empty network.

Assume a candidate network consisting of two star components with 𝑘1 ≥ 1 and 𝑘2 ≥ 2 nodes,

respectively, each yielding positive surplus. This covers the case of two stars as well as the case of

one star and one isolated node. Then the total payoff is:

(𝑘1 − 1)
[
1 − 𝑐 + (𝑘1 − 2)𝛿

2

]
+ (𝑘2 − 1)

[
1 − 𝑐 + (𝑘2 − 2)𝛿

2

]
(8)

Reconfiguring the nodes into a single star yields:

(𝑘1 + 𝑘2 − 1)
[
1 − 𝑐 + (𝑘1 + 𝑘2 − 2)𝛿

2

]
(9)

Now, subtracting the first equation from the second and simplifying yields:

[1 − 𝑐] + (2𝑘1𝑘2 − 2)𝛿
2

(10)

which is strictly positive if each separate star yields positive surplus as 2𝑘1𝑘2 > 𝑘1 and 2𝑘1𝑘2 > 𝑘2. It

follows that the surplus generated by the network strictly increases by combining a star component

with another star component or with any isolated node. Thus, assuming that a star generates

positive surplus, the network with more than one star yields strictly less surplus than a network

in which the nodes involved are combined into a single star consisting of 𝑛 nodes.

The treatment of the case 𝑐 > 1−𝛿
1−𝜖 is concluded by comparing payoffs of a single star involving

𝑛 nodes and the empty network. As the latter derives zero surplus, the star network is the unique

efficient network if:

(𝑛 − 1) (1 − 𝑐) + (𝑛 − 1)(𝑛 − 2)
2

𝛿 > 0 (11)
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which reduces to:

𝑐 < 1 + (𝑛 − 2)
2

𝛿 (12)

Case 2: c ≤ 1−𝜹
1−𝝐 Next consider the case with 𝑐 ≤ 1−𝛿

1−𝜖 . In this case, adding a link by introduction

always weakly increases surplus; thus, the star can never be the efficient network.

As per Lemma 11, for any component of 𝑘 nodes the minimum number of links created

bilaterally is 𝑘−1. As every introduction is profitable, the efficient network maximizes the number

of introductions. Given 𝑘 − 1 links created bilaterally, the component that maximizes the number

of feasible introductions is the fully connected component. This component of size 𝑘 is formed

with 𝑘 − 1 links created bilaterally to form a star and all remaining links formed by introduction.

Next, an argument analogous to that for two stars used above shows that in any case where

there are more than one fully connected components (or one such component and a singleton

node), surplus increases in a single connected component. Thus, if 𝑐 ≤ 1−𝛿
1−𝜖 , the efficient network

is either complete or empty. To decide which is the efficient structure, we compare the surplus

generated by each. The empty network generates a total surplus of zero. The complete network

with 𝑛 nodes consists of
𝑛(𝑛−1)

2
links in total, of which at least 𝑛 − 1 links are created bilaterally.

The surplus in the complete network is then:

(𝑛 − 1)(1 − 𝑐)︸          ︷︷          ︸
bilateral links

+ (𝑛 − 1)(𝑛 − 2)
2

[1 − (1 − 𝜖)𝑐]︸                              ︷︷                              ︸
links from introductions

> 0 (13)

⇔ 2(1 − 𝑐) + (𝑛 − 2) [1 − (1 − 𝜖)𝑐] > 0 (14)

⇔ 𝑛(1 − 𝑐) + (𝑛 − 2)𝜖𝑐 > 0 (15)

⇔ (1 − 𝑐) + (𝑛 − 2)
𝑛

𝜖𝑐 > 0 (16)

⇔ 1 >

[
1 − (𝑛 − 2)

𝑛
𝜖

]
𝑐 (17)

⇔ 1

1 −
(
1 − 2

𝑛

)
𝜖
> 𝑐 (18)

Surplus from the complete network is thus strictly higher than surplus from the empty network if

𝑐 <
1

1 −
(
1 − 2

𝑛

)
𝜖

(19)

□
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A.2 Proof of Proposition 4 — Stability of Efficient Network Configurations

This section derives the parameter conditions for the stability of the three network configurations

that can be efficient, including the empty network 𝑔0 , 𝑔0
, the star network 𝑔𝑆 , 𝑔0

, and the complete

network 𝑔𝑆 , 𝑔𝑁 \ 𝑔𝑆.

Empty Network In the empty network 𝑔0 , 𝑔0
, no links exist, implying 𝜋𝑖(𝑔) = 0 ∀ 𝑖 and thus the

only condition to verify is bilateral link creation, yielding the stability condition:

𝑐 ≥ 1 (20)

Thus the empty network is stable if the benefits from a single new link do not outweigh the

costs.

Star Network In the star network 𝑔𝑆 , 𝑔0
, the set of possible deviations to consider applies to two

types of nodes (hub and spoke) and there are opportunities to destroy links as well as to

create links bilaterally and through introductions:

(a) The star network is stable against link destruction by the hub and one peripheral node if:

𝑐 ≤ 1 + 𝑛 − 2

2

(1 + 𝛾)𝛿 (21)

(b) The star network is stable against bilateral link creation of two peripheral nodes if:

𝑐 ≥ 1 − (1 − 𝛾)𝛿 (22)

(c) The star network is stable against introduction of a pair of peripheral nodes and the hub

if:

𝑐 ≥ 1 − 𝛿
1 − 𝜖

(23)

Complete Network In the complete network 𝑔𝑆 , 𝑔𝑁 \ 𝑔𝑆 all possible links are in place. Thus, we

only need to consider deviations by link destruction. There are two possible types of links to

consider, depending on whether they involve two peripheral nodes of the intermediate star

network 𝑔𝑆 or only one such node and the center of 𝑔𝑆.

(a) A link involving two peripheral nodes was created by introduction. Destruction of such

a link replaces a direct connection created by introduction with an indirect connection

that is intermediated by the remaining nodes connected to the two nodes breaking their

link. For 𝑛 > 3, there are at least two such intermediaries and the two players destroying

the link jointly capture 𝛿. The complete network is thus stable against destruction of
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this link if:

1 − (1 − 𝜖) 𝑐 ≥ 𝛿 (24)

𝑐 ≤ 1 − 𝛿
1 − 𝜖

(25)

(b) A link involving one peripheral node and the center of the 𝑔𝑆 was created bilaterally.

Destruction of such a link will disconnect the peripheral node from all other nodes in

the network as it removes the only link created bilaterally and by implication all links

created by introduction involving this peripheral node. Payoffs for the peripheral node

thus go to zero. For the center node, destruction of the link results in a loss of payoffs

by
(1−𝑐)

2
. The complete network is thus stable against destruction of this link if:

(1 − 𝑐)
2

+ (1 − 𝑐)
2

+ (𝑛 − 2) 1 − (1 − 𝜖) 𝑐
2

≥ 0 (26)

2 (1 − 𝑐) + (𝑛 − 2) [1 − (1 − 𝜖) 𝑐] ≥ 0 (27)

𝑛 − 𝑛𝑐 + (𝑛 − 2) 𝜖𝑐 ≥ 0 (28)

𝑐 ≤ 1

1 −
(
1 − 2

𝑛

)
𝜖

(29)

A.3 Proof of Proposition 5

Proof. The proof is by contradiction. Assume that network 𝑔 is myopically pairwise stable with

introductions. Further, assume that there are two nodes, 𝑖 and 𝑗, violating the condition in

equation 3 such that ℓ𝑖 𝑗 > 3 and 𝑑𝑖(𝑔) + 𝑑 𝑗(𝑔) > − 2(1−𝑐)
𝛿(1+𝛾) . I will show that in that case a new

connection between 𝑖 and 𝑗 created bilaterally would be profitable and thus the network cannot be

stable.

Consider a new connection being formed between 𝑖 and 𝑗. The new link will create a direct

connection with direct benefit net of costs of 1−𝑐. In addition there are 𝑑𝑖(𝑔)+𝑑 𝑗(𝑔)new connections

of length two creating a benefit of 𝛿 each. For each such connection, 𝑖 and 𝑗 form an end node and,

as ℓ𝑖 𝑗 > 3, an essential intermediary, respectively, and thus the two nodes capture a benefit of
1+𝛾

2
𝛿

for each of these indirect connections.

The total change payoff from the connection 𝑖 𝑗 to nodes 𝑖 and 𝑗 is thus

Δ𝜋𝑖 𝑗 = (1 − 𝑐) +
[
𝑑𝑖(𝑔) + 𝑑 𝑗(𝑔)

]
𝛿

1 + 𝛾

2

(30)

> (1 − 𝑐) − (1 − 𝑐) = 0 (31)

and thus the additional link is jointly profitable and the network 𝑔 is not pairwise stable, delivering

the contradiction.
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□

A.4 Proof of Lemma 7

Proof. The introduction of 𝑖 and 𝑗 by 𝑘 creates a new link 𝑖 𝑗. This proof derives the decomposition

of the effect of the new link 𝑖 𝑗 on the joint payoffs of nodes (𝑖, 𝑗, and 𝑘) denoted by

Δ𝜋𝑖 𝑗𝑘 = Δ𝜋𝑖 + Δ𝜋 𝑗 + Δ𝜋𝑘

= [𝜋𝑖(𝑔 + 𝑖 𝑗) − 𝜋𝑖(𝑔)] +
[
𝜋 𝑗(𝑔 + 𝑖 𝑗) − 𝜋 𝑗(𝑔)

]
+ [𝜋𝑘(𝑔 + 𝑖 𝑗) − 𝜋𝑘(𝑔)]

Recall the payoff function in equation 2, which separates direct connections, introductions,

indirect connections, and intermediation rents

𝜋𝑖(𝑔) = 𝑑𝑖(𝑔)
1 − 𝑐

2

︸      ︷︷      ︸
direct connections

+ 𝑑𝑖(𝑔𝐼)𝜖
𝑐

2

︸    ︷︷    ︸
introductions

+
∑
𝑗≠𝑖:
ℓ𝑖 𝑗=2

𝛿
1 − 𝐼{𝑟𝑖 𝑗=1}𝛾

2

︸                ︷︷                ︸
indirect connections

+
∑

𝑗≠𝑖 ,𝑘≠𝑖:
ℓ 𝑗𝑘=2∧𝑖 𝑗∈𝑔∧𝑖𝑘∈𝑔

𝐼{𝑟𝑗𝑘=1}𝛿𝛾

︸                        ︷︷                        ︸
intermediation rents

We decompose Δ𝜋𝑖 in a similar way and consider each component for each node 𝑝 ∈ {𝑖 , 𝑗 , 𝑘} in

turn.

Δ𝜋𝑝 = Δ𝜋Direct

𝑝 + Δ𝜋Introductions

𝑝 + Δ𝜋Indirect

𝑝 + Δ𝜋Rents

𝑝

Effect on Direct Connections and Introductions Consider a node 𝑝 ∈ {𝑖 , 𝑗 , 𝑘}

Δ𝜋Direct

𝑝 =𝑑𝑝(𝑔 + 𝑖 𝑗)
1 − 𝑐

2

− 𝑑𝑝(𝑔)
1 − 𝑐

2

=
[
𝑑𝑝(𝑔 + 𝑖 𝑗) − 𝑑𝑝(𝑔)

] 1 − 𝑐
2

=


1−𝑐

2
if 𝑝 ∈ {𝑖 , 𝑗}

0 if 𝑝 ∈ {𝑘}

It then follows that

Δ𝜋Direct

𝑖 𝑗𝑘
= 1 − 𝑐
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Effect on Cost Benefits from Introductions Consider a node 𝑝 ∈ {𝑖 , 𝑗 , 𝑘}

Δ𝜋Introductions

𝑝 =𝑑𝑝(𝑔𝐼 + 𝑖 𝑗)𝜖
𝑐

2

− 𝑑𝑝(𝑔𝐼)𝜖
𝑐

2

=
[
𝑑𝑝(𝑔 + 𝑖 𝑗) − 𝑑𝑝(𝑔)

]
𝜖
𝑐

2

=


𝜖 𝑐

2
if 𝑝 ∈ {𝑖 , 𝑗}

0 if 𝑝 ∈ {𝑘}

It then follows that

Δ𝜋Introductions

𝑖 𝑗𝑘
= 𝜖𝑐

Effect on Indirect Connections First, given that ℓ𝑖 𝑗(𝑔) = 2, the new link 𝑖 𝑗 does not create any

new paths in 𝑔 + 𝑖 𝑗 between nodes that are unconnected in 𝑔. Furthermore, at most the new link

can reduce the length of the shortest path between any pair of nodes 𝑣, 𝑤 by one step. Thus, either

ℓ𝑣𝑤(𝑔 + 𝑖 𝑗) = ℓ𝑣𝑤(𝑔), or ℓ𝑣𝑤(𝑔 + 𝑖 𝑗) = ℓ𝑣𝑤(𝑔) − 1. Second, for connections between a pair 𝑣, 𝑤 with

shortest path of the same length in 𝑔 and 𝑔 + 𝑖 𝑗, the new link 𝑖 𝑗 can open an alternative path. If the

shortest path between 𝑣, 𝑤 is of length two, then at most one additional path is created. Thus, for

𝑣, 𝑤 with ℓ𝑣𝑤(𝑔 + 𝑖 𝑗) = ℓ𝑣𝑤(𝑔) = 2, we have either 𝑟𝑣𝑤(𝑔 + 𝑖 𝑗) = 𝑟𝑣𝑤(𝑔), or 𝑟𝑣𝑤(𝑔 + 𝑖 𝑗) = 𝑟𝑣𝑤(𝑔) + 1.

Third, for node 𝑖 any new connections of length two created by link 𝑖 𝑗 will be to nodes that are

already connected to 𝑗 in 𝑔, and vice versa for node 𝑗. Fourth, in such cases where the length of

the shortest path in 𝑔 was greater than two and a new connection of length two is created, node 𝑗

will be the unique intermediary for this new connection.

We can then write down the effect on indirect payoffs. We can restrict attention to node

𝑝 ∈ {𝑖 , 𝑗}. Payoffs from indirect connections of node 𝑘 are unaffected by the new link 𝑖 𝑗. Node 𝑘 is

already connected to both 𝑖 and 𝑗 via a direct link in 𝑔.
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Δ𝜋Indirect

𝑝 =
∑
𝑢≠𝑝:

ℓ𝑝𝑢(𝑔+𝑖 𝑗)=2

𝛿
1 − 𝐼{𝑟𝑝𝑢(𝑔+𝑖 𝑗)=1}𝛾

2

−
∑
𝑢≠𝑝:

ℓ𝑝𝑢(𝑔)=2

𝛿
1 − 𝐼{𝑟𝑝𝑢(𝑔)=1}𝛾

2

=
∑
𝑢≠𝑝:

ℓ𝑝𝑢(𝑔+𝑖 𝑗)=2

∧ℓ𝑝𝑢(𝑔)=3

𝛿
1 − 𝐼{𝑟𝑝𝑢(𝑔+𝑖 𝑗)=1}𝛾

2

+
∑
𝑢≠𝑝:

ℓ𝑝𝑢(𝑔+𝑖 𝑗)=2

∧ℓ𝑝𝑢(𝑔)=2

∧𝑟𝑝𝑢(𝑔+𝑖 𝑗)=2

∧𝑟𝑝𝑢(𝑔)=1

𝛿
𝛾

2

−
∑
𝑢≠𝑝:

ℓ𝑝𝑢(𝑔+𝑖 𝑗)=1

∧ℓ𝑝𝑢(𝑔)=2

𝛿
1 − 𝐼{𝑟𝑝𝑢(𝑔)=1}𝛾

2

=
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗}:

𝑢𝑝∉𝑔∧𝑢𝑣∈𝑔

𝐼ℓ𝑝𝑢(𝑔)=3
𝛿

1 − 𝛾

2

+
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗}:

𝑢𝑣∈𝑔∧𝑢𝑝∉𝑔

𝐼{ℓ𝑢𝑝(𝑔)=2∧𝑟𝑢𝑝(𝑔)=1}𝛿
𝛾

2

− 𝛿

[
1

2

−
𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

2

]

=𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗}:

𝑢𝑝∉𝑔∧𝑢𝑣∈𝑔

[
𝐼ℓ𝑢𝑝(𝑔)>2

1 − 𝛾

2

+ 𝐼{ℓ𝑢𝑝(𝑔)=2∧𝑟𝑢𝑝(𝑔)=1}
𝛾

2

]
− 𝛿

[
1

2

−
𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

2

]

Thus, the joint payoff effect from indirect links is

Δ𝜋Indirect

𝑖 𝑗𝑘

=𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔,𝑢𝑤∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 − 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]
− 𝛿

[
1 − 𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

]

Effect on Intermediation Rents Earned The observations from the previous section on indirect

connections still apply: The addition of the link 𝑖 𝑗 either decreases the length of a shortest path by

one or leaves it unchanged and either increases the number of intermediaries on a given connection

of length two by one or leaves it unchanged.

For nodes 𝑖 and 𝑗, the link 𝑖 𝑗 creates new intermediation rents from any new connection of

length two that previously was of length greater than two. Such connections involve 𝑖 and 𝑗 and

one other node connected to exactly one of the two. The new connection will have exactly one

path of length two, via the new link 𝑖 𝑗, and thus will earn a new intermediation rent. For node 𝑘,

the new link 𝑖 𝑗 does not create new intermediation rents. The new link can, however, result in the

loss of intermediation rents for 𝑘, in cases where a new alternative route of length two involving

the segment 𝑖 𝑗 bypassing 𝑘 is created. Any such connection involves 𝑖 and 𝑗 and a third node that

is connected to 𝑘 as well as to either 𝑖 and 𝑗. In addition, 𝑘 can lose intermediation rents from the

connection between 𝑖 and 𝑗 itself, which is replaced by a direct connection of length one.
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In terms of the payoff function for node 𝑝 ∈ {𝑖 , 𝑗 , 𝑘}:

Δ𝜋Rents

𝑝

=
∑

𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔+𝑖 𝑗
∧𝑝𝑤∈𝑔+𝑖 𝑗

𝐼{ℓ𝑢𝑤(𝑔+𝑖 𝑗)=2∧𝑟𝑢𝑤(𝑔+𝑖 𝑗)=1}𝛿𝛾 −
∑

𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔
∧𝑝𝑤∈𝑔

𝐼ℓ𝑢𝑤(𝑔)=2∧{𝑟𝑢𝑤(𝑔)=1}𝛿𝛾

=𝛿
∑

𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔+𝑖 𝑗
∧𝑝𝑤∈𝑔+𝑖 𝑗

𝐼{ℓ𝑢𝑤(𝑔)=3∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=2

∧𝑟𝑢𝑤(𝑔+𝑖 𝑗)=1

}𝛾 − 𝛿
∑

𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔
∧𝑝𝑤∈𝑔

[
𝐼{ ℓ𝑢𝑤(𝑔)=2∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=2

∧𝑟𝑢𝑤(𝑔)=1∧𝑟𝑢𝑤(𝑔+𝑖 𝑗)=2

} + 𝐼{ℓ𝑢𝑤(𝑔)=2∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=1

∧𝑟𝑢𝑤(𝑔)=1

}] 𝛾

=


𝛿
∑
𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔+𝑖 𝑗
∧𝑝𝑤∈𝑔+𝑖 𝑗

𝐼{ℓ𝑢𝑤(𝑔)=3∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=2

∧𝑟𝑢𝑤(𝑔+𝑖 𝑗)=1

}𝛾 if 𝑝 ∈ {𝑖 , 𝑗}

−𝛿∑𝑢≠𝑝,𝑤≠𝑝:

𝑝𝑢∈𝑔
∧𝑝𝑤∈𝑔

[
𝐼{ ℓ𝑢𝑤(𝑔)=2∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=2

∧𝑟𝑢𝑤(𝑔)=1∧𝑟𝑢𝑤(𝑔+𝑖 𝑗)=2

} + 𝐼{ℓ𝑢𝑤(𝑔)=2∧ℓ𝑢𝑤(𝑔+𝑖 𝑗)=1

∧𝑟𝑢𝑤(𝑔)=1

}] 𝛾 if 𝑝 ∈ {𝑘}

=



𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑤∈{𝑖 , 𝑗}:

𝑝𝑢∈𝑔∧𝑢𝑤∉𝑔

𝐼{ℓ𝑢𝑤(𝑔)>2}𝛾 if 𝑝 ∈ {𝑖 , 𝑗}

−𝛿∑ 𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑝𝑢∈𝑔∧𝑢𝑣∈𝑔

∧𝑢𝑤∉𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}𝛾 − 𝛿𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾 if 𝑝 ∈ {𝑘}

It then follows that

Δ𝜋Rents

𝑖 𝑗𝑘
= 𝛿

∑
𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣,𝑤∈{𝑖 , 𝑗}:
𝑣𝑢∈𝑔∧𝑢𝑠∉𝑔

𝐼{ℓ𝑢𝑤(𝑔)>2}𝛾 − 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑘𝑢∈𝑔∧𝑢𝑣∈𝑔

∧𝑢𝑤∉𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}𝛾 − 𝛿𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾 (32)
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Summing Across All Components

Δ𝜋𝑖 𝑗𝑘 =Δ𝜋
Direct

𝑖 𝑗𝑘
+ Δ𝜋Introductions

𝑖 𝑗𝑘
+ Δ𝜋Indirect

𝑖 𝑗𝑘
+ Δ𝜋Rents

𝑖 𝑗𝑘

=1 − 𝑐 + 𝜖𝑐

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 − 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]
− 𝛿

[
1 − 𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

]

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑣𝑢∈𝑔∧𝑢𝑠∉𝑔

𝐼{ℓ𝑢𝑤(𝑔)>2}𝛾 − 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑘𝑢∈𝑔∧𝑢𝑣∈𝑔

∧𝑢𝑤∉𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}𝛾 − 𝛿𝐼{𝑟𝑖 𝑗(𝑔)=1}𝛾

=1 − (1 − 𝜖)𝑐 − 𝛿

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 − 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑣𝑢∈𝑔∧𝑢𝑠∉𝑔

𝐼{ℓ𝑢𝑤(𝑔)>2}𝛾 − 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑘𝑢∈𝑔∧𝑢𝑣∈𝑔

∧𝑢𝑤∉𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}𝛾

=1 − (1 − 𝜖)𝑐 − 𝛿

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 + 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]

− 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

∧𝑘𝑢∈𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}𝛾

We can now split intermediation rents gained from nodes unconnected to 𝑘 and from nodes

connected to 𝑘 and sum the latter with intermediation rents lost by node 𝑘. The gains from new

indirect connections remain unaffected from conditioning on 𝑘𝑢 ∉ 𝑔 as 𝑢 ∉ {𝑖 , 𝑗 , 𝑘}, 𝑤 ∈ {𝑖 , 𝑗} :

ℓ 𝐼ℓ𝑢𝑤(𝑔)>2
implies 𝑘𝑢 ∉ 𝑔. Taken together this argument yields the desired term.
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Δ𝜋𝑖 𝑗𝑘 =1 − (1 − 𝜖)𝑐 − 𝛿

+ 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

𝑘𝑢∉𝑔

[
𝐼ℓ𝑢𝑤(𝑔)>2

1 + 𝛾

2

+ 𝐼{ℓ𝑢𝑤(𝑔)=2∧𝑟𝑢𝑤(𝑔)=1}
𝛾

2

]

− 𝛿
∑

𝑢∉{𝑖 , 𝑗 ,𝑘},
𝑣∈{𝑖 , 𝑗},𝑤∈{𝑖 , 𝑗}:
𝑢𝑣∈𝑔∧𝑢𝑤∉𝑔

∧𝑘𝑢∈𝑔

𝐼{𝑟𝑢𝑤(𝑔)=1}
𝛾

2

□

A.5 Proof of Proposition 8

Proof. Let 𝜇 be the number of nodes 𝑢 such that (i) 𝑢𝑘 ∈ 𝑔, (ii) 𝑢𝑖 ∈ 𝑔 or 𝑢𝑗 ∈ 𝑔, but not both, and

(iii) 𝑘 is essential for the indirect connection between 𝑢 and 𝑗 (or 𝑢 and 𝑖), respectively.

The proof is by contradiction. Assume that network 𝑔 is myopically stable with introductions

and there exists an unused introduction opportunity for 𝑘 to introduce 𝑖 and 𝑗. Furthermore,

assume 𝜇 is strictly less than 𝜇∗ =
⌊
2

1−(1−𝜖)𝑐−𝛿
𝛿𝛾

⌋
.

Substituting the expression in Lemma 7 and dropping the non-negative middle term, the payoff

change to 𝑖 𝑗𝑘 is then at least

Δ𝜋𝑖 𝑗𝑘 ≥1 − (1 − 𝜖)𝑐 − 𝛿 − 𝜇
𝛿𝛾

2

>1 − (1 − 𝜖)𝑐 − 𝛿 − 𝜇∗ 𝛿𝛾

2

=1 − (1 − 𝜖)𝑐 − 𝛿 −
⌊
2

1 − (1 − 𝜖)𝑐 − 𝛿
𝛿𝛾

⌋
𝛿𝛾

2

≥1 − (1 − 𝜖)𝑐 − 𝛿 −
(
2

1 − (1 − 𝜖)𝑐 − 𝛿
𝛿𝛾

)
𝛿𝛾

2

=1 − (1 − 𝜖)𝑐 − 𝛿 − (1 − (1 − 𝜖)𝑐 − 𝛿)

=0

The introduction thereby is strictly jointly profitable to 𝑖 𝑗𝑘, delivering the contradiction.

□
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A.6 Proof of Proposition 9

Proof. The proof is by contradiction. Assume that 𝑔 is myopically stable with introductions and that

the clustering coefficient 𝒞𝑘 of node 𝑘 with degree 𝑑𝑘 is strictly below 𝒞(𝑑𝑘) = ⌊ 𝑑𝑘𝜆∗ ⌋ (𝜆∗−1)𝜆∗

(𝑑𝑘−1)𝑑𝑘 ≤ 𝜆∗−1

𝑑𝑘−1
.

First some notation. Let the set of nodes that are neighbors of 𝑘 in 𝑔 be denoted by 𝑁𝑘 . Let 𝑔𝐾

be the subnetwork of 𝑔 formed by the set of nodes 𝑁𝑘 and the links that are links between nodes

in 𝑁𝑘 in 𝑔. Note that 𝑔𝐾 does not include 𝑘 and all the links in 𝑔𝐾 are links between neighbors of

𝑘. Intuitively, the links in 𝑔𝐾 are the links forming closed triangles around 𝑘, which are required

for stability against introductions in the sense of Proposition 8. The degree of node 𝑖 within 𝑔𝐾 is

labeled 𝑑𝐾
𝑖

and the average degree across nodes in 𝑁𝑘 is labeled 𝑑̄𝐾 .

To show the contradiction, we distinguish two cases based on whether or not the clustering

condition of Proposition 9 implies a complete subnetwork 𝑔𝐾 :

Case 1: 𝑑𝑘 ≤ 𝜆∗: If 𝑑𝑘 ≤ 𝜆∗
, then 𝒞(𝑑𝑘) = 1; that is, at the lower bound on clustering of Proposition 9

the neighbors of 𝑘 form a fully connected subnetwork. Thus, 𝒞𝑘 < 𝒞(𝑑𝑘) implies ∃𝑖 , 𝑗 ∈ 𝑁𝑘

such that 𝑖 𝑗 ∉ 𝑔𝐾 . As 𝑑𝑘 ≤ 𝜆∗
, we have both 𝑑𝐾

𝑖
< 𝜆∗ − 1 =

𝜇∗

2
and 𝑑𝐾

𝑗
< 𝜆∗ − 1 =

𝜇∗

2
, with

strict inequality as 𝑖 and 𝑗 are not connected to each other. It follows that the total number

of neighbors that the pair 𝑖 and 𝑗 share with 𝑘 but not with each other is strictly less than 𝜇∗
:

𝑑𝐾
𝑖
+ 𝑑𝐾

𝑗
< 𝜇∗

. By Proposition 8 this implies that an introduction of 𝑖 and 𝑗 by 𝑘 is profitable

and thereby 𝑔 is not myopically stable with introductions. This delivers the contradiction.

Case 2: 𝑑𝑘 > 𝜆∗: If 𝑑𝑘 > 𝜆∗
, then 𝒞(𝑑𝑘) =

⌊
𝑑𝑘
𝜆∗

⌋
(𝜆∗−1)𝜆∗

(𝑑𝑘−1)𝑑𝑘 ; that is, at the lower bound on clustering

of Proposition 9 the subnetwork of the neighbors of 𝑘 is not fully connected. Now, as we

assume 𝒞𝑘 < 𝒞(𝑑𝑘) we have

𝒞𝑘 < 𝒞(𝑑𝑘)

=

⌊
𝑑𝑘
𝜆∗

⌋
(𝜆∗ − 1)𝜆∗

(𝑑𝑘 − 1)𝑑𝑘

≤ (𝜆∗ − 1)
(𝑑𝑘 − 1)

We now show that this upper bound on clustering is equivalent to a limit on the number of

links within 𝑔𝐾 and thereby on 𝑑̄𝐾 , the average degree of nodes in 𝑁𝑘 . Recall that the total

number of possible links in 𝑔𝐾 , a network of 𝑑𝑘 nodes, is
(𝑑𝑘−1)𝑑𝑘

2
. Thus, the upper bound on

clustering implies that the number of links in 𝑔𝐾 is strictly less than
(𝜆∗−1)
(𝑑𝑘−1) ×

(𝑑𝑘−1)𝑑𝑘
2

=
(𝜆∗−1)𝑑𝑘

2

As each link is shared by two nodes, it follows that the average degree 𝑑̄𝐾 < 𝜆∗ − 1 =
𝜇∗

2
.

We can now show that there is at least one unconnected pair of nodes whose degrees in 𝑔𝐾
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add up to less than 𝜇∗
, that is min𝑖 𝑗∉𝑔𝐾

[
𝑑𝐾
𝑖
+ 𝑑𝐾

𝑗

]
< 𝜇∗

.

min

𝑖 𝑗:𝑖 , 𝑗∈𝑁𝑘 ,𝑖 𝑗∉𝑔𝐾

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
≤ 1

|{𝑖 𝑗 : 𝑖 , 𝑗 ∈ 𝑁𝑘 , 𝑖 𝑗 ∉ 𝑔𝐾}|
∑

𝑖 𝑗:𝑖 , 𝑗∈𝑁𝑘 ,𝑖 𝑗∉𝑔𝐾

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
(33)

≤ 1

|{𝑖 𝑗 : 𝑖 , 𝑗 ∈ 𝑁𝑘}|
∑

𝑖 𝑗:𝑖 , 𝑗∈𝑁𝑘

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
(34)

=
2

(𝑑𝑘 − 1)
∑

𝑖 𝑗:𝑖 , 𝑗∈𝑁𝑘

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
(35)

=
2

𝑑𝑘(𝑑𝑘 − 1)
∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘 :𝑗>𝑖

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
(36)

=
1

𝑑𝑘(𝑑𝑘 − 1)
∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘 :𝑗≠𝑖

[
𝑑𝐾𝑖 + 𝑑𝐾𝑗

]
(37)

=
1

𝑑𝑘(𝑑𝑘 − 1)


∑
𝑖∈𝑁𝑘

∑
𝑗∈𝑁𝑘 :𝑗≠𝑖

𝑑𝐾𝑖 +
∑
𝑗∈𝑁𝑘

∑
𝑖∈𝑁𝑘 :𝑖≠𝑗

𝑑𝐾𝑗

 (38)

=
1

𝑑𝑘(𝑑𝑘 − 1)


∑
𝑖∈𝑁𝑘

(𝑑𝑘 − 1)𝑑𝐾𝑖 +
∑
𝑗∈𝑁𝑘

(𝑑𝑘 − 1)𝑑𝐾𝑗

 (39)

=
1

𝑑𝑘


∑
𝑖∈𝑁𝑘

𝑑𝐾𝑖 +
∑
𝑗∈𝑁𝑘

𝑑𝐾𝑗

 (40)

= 2𝑑̄𝑘 < 𝜇∗
(41)

The first step uses the fact that the minimum is less than the average. In the second step we

exploit the fact that the average of the sum of degrees across absent links is weakly less than

the average across all links. This follows from the fact that in this expression conditioning on

the absence of a link places less weight on high-degree nodes relative to low-degree nodes.10

By Proposition 8 this implies that the network is not myopically stable with introductions,

delivering the contradiction.

□

10 See Vega-Redondo (2007, p.44f) for a discussion of this point.
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